Cell volume decrease as a link between azaspiracid-induced cytotoxicity and c-Jun-N-terminal kinase activation in cultured neurons.
نویسندگان
چکیده
Azaspiracids (AZAs) are a group of marine toxins recently described that currently includes 20 members. Not much is known about their mechanism of action, although the predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system, and exhibits high neurotoxicity in vitro. AZA distribution is increasing globally with mussels being most widely implicated in AZA-related food poisoning events, with human poisoning by AZAs emerging as an increasing worldwide problem in recent years. We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Several targets for AZA-induced neurotoxicity were evaluated. AZA-1 elicited a concentration-dependent hyperpolarization in cerebellar granule cells of 2-3 days in vitro; however, it did not modify membrane potential in mature neurons. Furthermore, in immature cells, AZA-1 decreased the membrane depolarization evoked by exposure of the neurons to 50mM K(+). Preincubation of the neurons with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), amiloride, or ouabain before addition of AZA-1 decreased the AZA-1-induced neurotoxicity and the increase in phosphorylated c-Jun-N-terminal kinase (JNK) caused by the toxin, indicating that disruption in ion fluxes was involved in the neurotoxic effect of AZA-1. Furthermore, short exposures of cultured neurons to AZA-1 caused a significant decrease in neuronal volume that was reverted by preincubation of the neurons with DIDS or amiloride before addition of the toxin. The results presented here indicate that the JNK activation induced by AZA-1 is secondary to the decrease in cellular volume elicited by the toxin.
منابع مشابه
The c-Jun-N-terminal kinase is involved in the neurotoxic effect of azaspiracid-1.
AIMS Azaspiracids (AZAs) are marine phycotoxins with an unknown mechanism of action, recently implicated in human intoxications. The predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system and exhibits high neurotoxicity in vitro. METHODS We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Imm...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملBrain Targeting of 1,9-Pyrazoloanthrone an c-Jun-N-terminal Kinase Inhibitor Using Liposomes for Effective Management of Parkinson’s Disease
The major challenge to treat Parkinson’s disease (PD) is penetration of target molecule into the brain to improve the efficacy of drugs. To achieve better brain penetration and targeted delivery, 1,9-Pyrazoloanthrone (1,9-P) loaded liposomes were developed by solvent injection technique using ultrasonication and evaluated for particle size, morphology, entrapment efficiency, FT-IR, and in-vitro...
متن کاملBrain Targeting of 1,9-Pyrazoloanthrone an c-Jun-N-terminal Kinase Inhibitor Using Liposomes for Effective Management of Parkinson’s Disease
The major challenge to treat Parkinson’s disease (PD) is penetration of target molecule into the brain to improve the efficacy of drugs. To achieve better brain penetration and targeted delivery, 1,9-Pyrazoloanthrone (1,9-P) loaded liposomes were developed by solvent injection technique using ultrasonication and evaluated for particle size, morphology, entrapment efficiency, FT-IR, and in-vitro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 113 1 شماره
صفحات -
تاریخ انتشار 2010